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1 The Model Setup

The model that we analyze in this chapter is representative of the new-Keynesian models

that are currently used to analyze the business cycle and to study monetary policy. The

model is Keynesian because nominal prices are not flexible; they adjust gradually in response

to an exogenous shock to the economy. The model is new because it is built upon a solid

microeconomic foundation. The predictions of the model arise as the result of optimal

behavior on the part of households and firms. With a micro-founded model, we will be able

to see how the behavior of the aggregate economy over the business cycle is similar to how an

individual households and firms might also behave during the business cycle. Furthermore,

we will be able to exactly how the way in which monetary policy is conducted influences the

equilibrium relationships between inflation, output, and interest rates.

1.1 The Demand for Goods.

The demand for goods and services is assumed to have the following linear relationship:

yt = Etyt+1 − (rt+1 − r̄) + gt. (1)

Here, yt ≡ log Yt denotes natural log of real output, rt+1 is the real interest rate on funds

saved from period t to t+ 1, and r̄ ≡ − log β is the steady state natural rate of interest. The

expression Etyt+1 means the expected value of (log) output in period t+ 1 given information

about the economy available as of period t. The variable gt denotes an exogenous shock to

the demand for goods and services and has an unconditional expectation of zero. We call

equation (1) a dynamic IS relationship because it is based on equilibrium in the market

for goods and services.

The dynamic IS relationship is based on a standard Euler equation for a representative

household and is therefore closely related to the Euler equations that we have encountered

before. The representative household that we should have in mind is one that chooses how

much to consume and save each period based on its current income, its income in the following

period, and the market real interest rate. In equilibrium, saving does not take place on the

aggregate level, and so the real interest rate always adjusts so that the household is just

satisfied with its income in the current period relative to the future.

The shock to aggregate demand gt reflects any exogenous fluctuation in the demand for
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goods. A positive realization of gt reflects a temporary increase in the demand for goods that

could be due to a temporary increase in government purchases, some short-term exuberance

in the financial markets, or a variety of other things. Similarly, a negative realization of gt

would reflect a temporary decrease in the demand for goods; perhaps because of a sudden

reduction in the demand for net exports or a collapse in asset prices.

1.2 The Fisher Equation

The Fisher equation links nominal and real interest rates:

it = rt + Etπt+1, (2)

where it is the nominal interest rate on funds saved from period t to t + 1, rt is the ex

ante real interest rate earned over the same period, and Etπt+1 means the expected value

of inflation in period t + 1 given information about the economy available as of period t.

Equation (2) arises because financial business is conducted in nominal terms but people care

about real quantities. Therefore, the nominal interest rate is determined by the expected

rate of inflation and the desired real interest rate.

1.3 Monetary Policy

We suppose that monetary policy is set according to the following rule:

it = r̄ + πT + φπ
(
πt − πT

)
+ φy

(
yt − ȳ

)
+ vt, (3)

where ȳ is the (log) natural rate of output and vt is an exogenous shock to monetary policy.

πT is the central bank’s target for inflation. φπ is the amount that the central bank raises

the nominal interest rate in response to a one unit increase in the rate of inflation. φy is

the amount that the central bank raises the nominal interest rate in response to a one unit

increase in output. The size of φπ relative to φy indicates the weight that the central place

attaches to inflation stabilization relative to output stabilization. For reasons that will be

discussed in more detail later, stability of the model requires φπ > 1 and φy > 0. That is, for

the model to predict a stable equilibrium, the central bank must respond to a one percent

increase inflation by an increase in the nominal interest rate that is greater than one percent.

It might be surprising that we have a specification for monetary policy that does not
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explicitly mention the supply of money. You can think of equation (3) as determining a

target for the nominal interest rate. The central bank then manipulates the supply of money

in order to meet its target. This way of thinking is similar to how the Federal Reserve

conducts monetary policy in the United States. The FOMC announces a target for the

nominal interest rate and then the Federal Reserve Bank of New York conduct open market

operations on a daily basis to make sure that the federal funds rate is equal to the target set

by the FOMC. Among other advantages, setting policy this way means that fluctuations in

the demand for money will be fully accommodated by the Federal Reserve and will therefore

have no effect on the rest of the economy.

1.4 The Supply of Goods

We suppose the following aggregate supply relation:

πt − π∗ = β (Etπt+1 − π∗) + κ(yt − ȳ) + ut, (4)

where πt is the inflation rate between periods t − 1 and t, π∗ is the steady state rate of

inflation, ȳ is the (log) natural rate of output, and ut is an exogenous shock to the rate of

inflation. The expression Etπt+1 means the expected value of inflation in period t+ 1 given

information about the economy available as of period t.

We will call equation (4) the dynamic AS relationship. The dynamic AS relationship

implies that current inflation is positively related to current output and to expected future

inflation. The dynamic AS relationship is the result of four fundamental assumptions about

the firms that produce goods. First, goods and services are produced by monopolistic com-

petitors. Second, the demand for the goods of each firm is proportional to the demand for all

goods. Third, firms face rising marginal costs of production. And finally, each firm incurs a

menu cost when it changes the price of its product.

Unlike firms in perfectly competitive markets, monopolistic competitors face downward-

sloping demand curves for their products and so they have the ability to set the prices of

their products. Because we assume that the demand for goods from each firm is proportional

to the demand for all goods, then an increase in household income will increase the demand

for goods produced by each firm. Since firms face rising marginal costs of production, they

would want to raise the prices of their products in response to an increase in the overall

demand for goods.
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But firms also find it costly to adjust their price from one period to the next and the cost

is increasing with magnitude of the price change. When the demand for goods rises, firms

might find it optimal to raise the prices of their products by less than the amount that would

be required to fully counter the rise in demand and so an increase in demand can produce

an increase in production.

Equation (4) is also routinely called the new-Keynesian Phillips curve. Strictly

speaking, a Phillips curve reflects the relationship between inflation and unemployment.

By recognizing the negative relationship between output and unemployment, equation (4)

can easily be rewritten in terms of inflation and unemployment. As we will see below, the

model will imply that there is no long-run relationship between inflation and output and

therefore no long-run relationship between inflation and unemployment.

2 Long-Run Equilibrium: The Steady State

In the steady state, all exogenous variables are equal to zero:

gt = vt = ut = 0. (5)

and all of the endogenous variables are constant. Using an asterisk to denote the steady

state magnitude of a variable, we can obtain the following steady state relationships:

y∗ = ȳ (6)

π∗ = πT (7)

r∗ = r̄ (8)

i∗ = r̄ + πT (9)

In the steady state, output equals the natural rate of output that is consistent with the

economy being on a smooth long-run growth path. The steady state real interest rate equals

the natural rate of interest. Recall that r̄ ≡ − log β which means that the real rate of interest

is determined by the rate at which households discount future utility. Other things equal, a

higher discounting – i.e., a lower value for β – will result in a lower steady state real interest

rate.

Finally, we can see that the central bank’s target rate of inflation determines the steady
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state rate of inflation and the nominal interest rate. It is worth appreciating that this model is

a general equilibrium model and provides a complete theoretical account of the determination

of the long-run rate of inflation. The central bank obtains its target for inflation in the long-

run by committing itself to adjusting the nominal interest rate whenever inflation deviates

from the target.

3 Calibration

In order to analyze the model numerically, we have to select values for the various parameters

of the model. Selecting parameters for a model is called calibration. While there are more

rigorous methods available, we will keep it simple. Table 1 contains the calibrated parameter

values that we will use for our analysis.

We will set the natural rate of output to 1 so steady state log output ȳ is 0. Doing so

means that we can simply interpret yt as the log deviation of output from the natural rate

or steady state.1 We will assume a value of β of 0.995 and this implies an annualized steady

state real rate of interest of 2%. Assume that κ is 0.1 which means that every 1% increase

in output above the natural rate will increase the rate of inflation by 0.1% on a quarterly

basis.

Consistent with the Federal Reserve’s recent statements, we will assume that the central

bank’s target for inflation is 2%. We will take the coefficient on inflation in the monetary

policy rule φπ to be 1.5 and we will set the coefficient on output φy to 0.5/4. This means

that the central bank will only adjust the nominal interest rate in response to both changes

in inflation and output, but with a greater priority given to inflation fluctuations.

Finally, we have to make some assumptions about how the exogenous shocks evolve.

We’ll assume that each is an AR(1) process:

gt+1 = ρggt + εgt+1 (10)

ut+1 = ρuut + εut+1 (11)

vt+1 = ρvvt + εvt+1. (12)

For the simulations below will assume that ρg = ρu = ρv = 0.5. The variables εgt , ε
u
t , and εvt

are white noise processes.

1Because: yt − ȳ = log Yt − log Ȳ ≈ (YT − Ȳ )/Ȳ . It is common to refer to yt − ȳ as the output gap.

10



4 Short-Run Fluctuations

Here we examine how the exogenous shocks to the model produce business cycles.

4.1 Temporary Demand Shock

First we will consider the effect of a persistent shock to the demand for goods. To do this,

we need to solve the model so that the endogenous variables are written as functions of

only the exogenous state variables. Usually, solving dynamic models with forward-looking

expectations is hard and so a numerical method like that provided by the Python module

linearsolve is required. But in the case of the new-Keynesian model, the solution can be

obtained with a bit of (tedious) algebra. The advantage of deriving the solution by hand is

that the hand-derived solution makes it clear how the various model parameters affect the

solution.

To derive the solution with respect to the demand shock, assume that the demand shock

is the only shock in the model and write the equilibrium equations as:

yt = Etyt+1 − (rt − r̄) + gt (13)

πt − πT = β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) (14)

it = rt + Etπt+1 (15)

it = r̄ + πT + φπ
(
πt − πT

)
+ φy (yt − ȳ) (16)

Now, use the Fisher equation and the monetary policy rule to eliminate the nominal interest

rate and the real interest rate from the model:

yt = Etyt+1 + Etπt+1 − φπ
(
πt − πT

)
− φy (yt − ȳ) + gt (17)

πt = (1− β)πT + β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) (18)

This is a forward-looking system in two endogenous variables and one exogenous variables

that can be solved with the method of undetermined coefficients. The solution to the system

is:

yt = ȳ +
1− βρg

(1− βρg)(1− ρg + φy) + κ(φπ − ρg)
gt (19)
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and:

πt = πT +
κ

(1− βρg)(1− ρg + φy) + κ(φπ − ρg)
gt. (20)

See Appendix D.1 for the derivations. Together equations (19) and (20) specify output and

inflation as functions of the exogenous demand shock and fundamental model parameters.

Two facts are immediately apparent. The first is that for a given demand shock gt,

output is decreasing with respect to the slope of the dynamic AS curve κ while inflation is

increasing with respect to κ. This makes sense when we recall that κ is decreasing with

respect to the degree of menu costs.2 Higher menu costs mean that firms are less willing to

raise the prices of their products in response to an increase in demand and so the dynamic

AS curve flattens. Therefore, higher menu costs means that other things equal equal, output

will be more strongly affected by demand shocks while inflation will be affected less strongly.

The second fact that is that for a given demand shock gt, output and inflation are both

decreasing with respect to the degree to which the central bank responds to changes in

inflation φπ. By raising the nominal interest rate in response to an increase in inflation, the

central bank leans against the underlying demand shock and simply offsets the change in

demand. Notice that in the extreme case as the central bank responds to inflation fluctuations

with increasing severity, φπ →∞ and:

yt = ȳ (21)

πt = πT . (22)

So in the present model, the central bank can completely stabilize output and inflation in

response to a shock to demand. That is, the central bank does not face a trade-off between

stabilization of one or the other.

Now we can use the solutions for output and inflation to construct impulse responses

of the endogenous variables to an exogenous 1 percent increase in the demand for goods

and services. Figure 1 plots impulse responses for it, rt, yt, and πt after the shock to gt.

Computed values for inflation and the interest rates have been annualized, i.e., multiplied

by 100.

Returning to Figure 1, we see that a 1 percent increase in the demand for goods increases

total output by about 1.2 percent and raises inflation by about 1 percent. The central bank

2Specifically: κ ≡ η/φ.
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has responded to the higher output and inflation by raising the nominal interest rate by a

little more than 2 percent while the real interest rate increases only by about 1.6 percent. As

the demand shock dissipates, output, inflation, and the nominal interest rate decline back

towards their steady state values.

The broad conclusion here is that a temporary demand shock will lead to a temporary

business cycle expansion. The business cycle expansion is associated with an increase in the

inflation rate. This leads us to conclude that demand-driven business cycle fluctuations are

associated with procyclical inflation.

4.2 Temporary Supply Shock

Now, we will consider the effect of a persistent shock to the inflation rate. Again, we could

compute the solution numerically or by hand. To solve by hand, we assume that the inflation

shock is the only shock in the model and write the equilibrium equations as:

yt = Etyt+1 − (rt+1 − r̄) (23)

πt − πT = β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) + ut (24)

it+1 = rt+1 + Etπt+1 (25)

it+1 = r̄ + πT + φπ
(
πt − πT

)
+ φy (yt − ȳ) (26)

Use the Fisher equation and the monetary policy rule to eliminate the nominal interest rate

and the real interest rate from the model:

yt = Etyt+1 + Etπt+1 − φπ
(
πt − πT

)
− φy (yt − ȳ) (27)

πt = (1− β)πT + β (Etπt+1 − π∗) + κ(yt − ȳ) + ut (28)

This is another forward-looking system in two endogenous variables and one exogenous

variables that can be solved with the method of undetermined coefficients. The solution to

the system is:

yt = ȳ − φπ − ρu
(1− βρu)(1− ρu + φy) + κ(φπ − ρu)

ut (29)
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and:

πt = πT +
1− ρu

(1− βρu)(1− ρu + φy) + κ(φπ − ρu)
ut. (30)

See Appendix D.3 for the derivations. Together equations (29) and (30) specify output and

inflation as functions of the exogenous demand shock and fundamental model parameters.

The solution equations have a similar form to the solutions found under demand shocks.

But there are clear differences. First, note that output is decreasing with respect to the

inflation shock ut while inflation is increasing with respect to the shock. Hence, shocks to

inflation send output and inflation in the opposite directions. Second, notice that as the

central bank increases the degree to which it responds to changes in inflation φπ, inflation

approaches its target but output does not. For example, taking φπ →∞, find:

yt = ȳ − 1

κ
ut (31)

πt = πT . (32)

From this we infer that the central bank faces a trade-off when responding to shocks to

inflation: each attempt to reduce the effect of the shock on inflation will induce a further

reduction in output below the natural rate.

Figure 2 plots impulse responses for it, rt, yt, and πt to a 0.25 percent exogenous increase

in inflation. The shock to inflation reduces total output by about 0.6 percent below the

natural rate and increases inflation by about 1.5 percent. The central bank responds to

the higher inflation by raising the nominal interest rate by a little less than 2 percent, also

driving up the real interest rate by about 1.2 percent. As the supply shock dissipates, output,

inflation, and the nominal interest rate return to their steady state values.

Now the broad conclusion here is that a temporary and positive inflation shock will lead

to a temporary business cycle recession. The business cycle recession is associated with a

higher inflation. This leads us to conclude that supply-driven business cycle fluctuations are

associated with countercyclical inflation.

4.3 Temporary Shock to Monetary Policy

Finally, we will consider the effect of a persistent shock to the monetary policy rule. so now

we solve the model assuming that the monetary policy shock is the only shock in the model.

14



So write the equilibrium equations as:

yt = Etyt+1 − (rt+1 − r̄) (33)

πt − πT = β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) (34)

it+1 = rt+1 + Etπt+1 (35)

it+1 = r̄ + πT + φπ
(
πt − πT

)
+ vt (36)

Now, use the Fisher equation and the monetary policy rule to eliminate the nominal interest

rate and the real interest rate from the model:

yt = Etyt+1 + Etπt+1 − (1− φπ)πT − φππt − vt (37)

πt = (1− β)πT + β (Etπt+1 − π∗) + κ(yt − ȳ) (38)

This is a forward-looking system in two endogenous variables and one exogenous variables

that can be solved with the method of undetermined coefficients. The solution to the system

is:

yt = ȳ − 1− βρv
(1− βρv)(1− ρv) + κ(φπ − ρv)

vt (39)

and:

πt = πT − κ

(1− βρv)(1− ρv) + κ(φπ − ρv)
vt. (40)

Together equations (39) and (40) specify output and inflation as functions of the exogenous

monetary policy shock and fundamental model parameters. These equations are very similar

to solution equations (19) and (20) for output and inflation under the demand shock. This

should not be surprising.

Figure 3 plots impulse responses for yt, πt, and it after a one-time one unit increase in vt.

Before analyzing the results, let’s consider how the figure was constructed. The monetary

policy shock leads to about a 1.3 percent reduction in output below the natural rate and

inflation falls by out 0.35 percent. The responses of output and inflation are qualitatively

similar to the responses to the demand shock in that both output and inflation move in the

same directions. However, the difference is that in this case, the nominal interest rate rises

just over 1 percent while it falls in response to the shock to the IS curve.
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5 Conclusion

The basic new-Keynesian model is a concise model of the dynamic relationship between GDP,

inflation, and interest rates. Like the RBC model, the new-Keynesian model is founded on

microeconomic principles. The distinguishing feature of the new-Keynesian approach is the

micro-founded new-Keynesian Phillips curve which arrises as a consequence of an explicit

model of price stickiness. The new-Keynesian Phillips curve implies a short-run trade-off

between output and inflation and therefore a role for monetary policy that is not present in

the RBC model.
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A The Euler Equation in a Two-Period Model

A.1 Households

A representative household lives for two periods. The household receives utility from con-

suming goods in each period. The lifetime utility to the household from consuming C0 in

the first period and C1 in the second is denoted by U(C0, C1) and is written as:

U(C0, C1) = u(C0) + βu(C1), (41)

where u(·) is the period utility function. We assume that u(·) is strictly increasing and

concave. The constant β < 1 reflects the degree to which the household discounts utility

received in the future relative to utility received in the current period. Figure 4 depicts a

typical period utility function.

The household has no initial wealth but receives income in each period that can be used

to purchase consumption goods. In period 0, the household receives income Y0 which it

allocates between consumption in period 0 and saving for use in period 1. This implies a

budget constraint for period 0:

C0 = Y0 − S1, (42)

where S1 represents savings for period 1. Saving is not required to be positive. If S1 is less

than zero, then we say that the household is borrowing against future its income. For every

unit of income that the household saves in period 0, it receives 1 + r0 units of income in

period 1.3 We call r0 the real interest rate because it reflects the rate at which the household

can transfer real goods – as opposed to dollar-denominated quantities – across time. Note

that while S1 has a subscript “1”, this quantity is in fact determined in period 0.

In period 1, the household consumes its income Y1 and its income from saving (1 + r0)S1

which implies a budget constraint for the second period:

C1 = Y1 + (1 + r0)S1. (43)

In writing this constraint, we are implicitly assuming that the household does not save in

period 1. In principle there is no reason why this wouldn’t be permissible, but since the

3Likewise, for every unit of income borrowed against future income, the household must pay 1 + r0 units
in period 1.
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household knows with certainty that there is no period 2, it is clear that saving in the last

period would not be optimal.

The household’s objective is to choose consumption in each period and a level of saving

to maximize its lifetime utility (41) subject to the two budget constraints (42) and (43). We

can express the optimization problem concisely as:

max
C0,C1,S1

u(C0) + βu(C1) (44)

s.t. C0 = Y0 − S1 (45)

C1 = Y1 + (1 + r0)S1. (46)

To solve this constrained optimization problem, we will use constraints to eliminate C0 and

C1 from the problem so that we are left with an unconstrained optimization problem.4 After

making the substitutions, we obtain the simplified representation of the problem:

max
S1

u(Y0 − S1) + βu [Y1 + (1 + r0)S1] (47)

Next we solve the problem by setting derivative of the objective function with with respect

to S1 equal to zero:

−u′(Y0 − S1) + (1 + r0)βu
′ [Y1 + (1 + r0)S1] = 0, (48)

where u′(·) denotes the period marginal utility of consumption. Equation (48) is the first-

order condition for the optimal choice of S1. Notice that the arguments of u′(·) in equation

(48) are still C0 and C1. This means that we can rewrite the first-order condition for S1 in

terms of consumption:

u′(C0) = β(1 + r0)u
′(C1) (49)

Equation (51) is called the household’s consumption Euler equation. The consumption Euler

equation – or just Euler equation, for short – indicates that the optimal choice of consumption

in period 0 depends on consumption in period 1 and, of course, the interest rate which

represents the price of period 0 goods in terms of period 1 goods. Equation (51) does not

directly link household consumption with income, but it does provide us with a way to

compute consumption in each period given a real interest rate and values for household

4Alternatively, we could certainly use the method of Lagrange multipliers.
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income in each period.

We will assume that the period utility function is the natural logarithm of consumption:

u(C) = logC. (50)

With this utility function, the household’s Euler equation is expressed as:

1

C0

=
β(1 + r0)

C1

(51)

B Derivation of the Dynamic IS Relationship

In the two-period model without uncertainty, we found that an Euler equation for a repre-

sentative household

1

C0

= β
1

C1

(1 + r0) (52)

Supposing there there is no investment, government purchases, or net exports, then Y = C

in every period:

1

Y0
= β

1

Y1
(1 + r0) (53)

Next, take the log of each side to obtain a linear representation of the Euler equation:

log Y0 = log β − log Y1 + log (1 + r0) (54)

Rearranging and defining r̄ ≡ − log β as the natural rate of interest, obtain:

y0 = y1 − (r0 − r̄). (55)

We have now obtained an expression based on the household’s Euler equation that links

(log) output today with (log) output in one period and the difference between the actual

real interest rate and the natural rate of interest.

So far, we have assumed no uncertainty; y1 is known in advance. In reality, future income

is not known in advance because future income is subject to the realization of unpredictable

macroeconomic shocks. I incorporate uncertainty into the model by replacing y1 with its

expectation conditional on period 0 information E0y1. I also append a demand shock to the
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end off the equation:

y0 = E0y1 − (r0 − r̄) + g0 (56)

Next, we simply note that the previous expression will hold for any two adjacent time periods

t and t+ 1 and obtain:

yt = Etyt+1 − (rt − r̄) + gt (57)

C Derivation of the Dynamic AS Relationship

C.1 Problem Setup

Consider a model in which a large number of monopolistically competitive firms produce

output in two adjacent time periods. As monopolistic competitors, each firm has the ability

to set the price of its product. Suppose that, absent other considerations, each firm would

like to set the price of its product in each period according to the following rule:

p∗t = pt + η(yt − ȳ) + ũt, (58)

where p∗t is the log of each firm’s ideal price, pt is the log of the aggregate price level and yt is

the log of output. ũt is a random shock to the cost of producing goods and can be associated

with events like shocks to the prices of oil or food. The constant η > 0 reflects the degree of

market power held by the typical firm. If firms were competitive price takers, then η = 0.

In each period, a typical firm j incurs two costs related to price-setting. First, the firm

incurs a cost that is increasing with respect to the squared difference between the firms

actually price and its ideal price. Second, the firm incurs a cost for changing its price at

a rate that is different from average inflation π∗. Together, the costs incurred in period t

associated with price-setting are:(
pjt − p∗t

)2
+ φ

(
pjt − p

j
t−1 − π∗

)2
. (59)

It is apparent that in the model the firm faces a trade-off between setting the price of

its product equal to its ideal price and simply adjusting its price to keep up with average

inflation. This tradeoff is what will give rise to the upward-sloping supply curve.
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C.2 Optimization

The firm chooses pj0 to minimize its costs:

min
pj0

(
pj0 − p∗0

)2
+ φ

(
pj0 − p

j
−1
)2

+ βE0

[(
pj1 − p∗1

)2
+ φ

(
pj1 − p

j
0

)2]
. (60)

The first-order optimality condition for pj0 is given by:

pj0 − p∗0 + φ
(
pj0 − p

j
−1
)
− φβE1

(
pj1 − p

j
0

)
= 0 (61)

Recall that:

pj0 − p0 − η(y0 − ȳ)− ũ0 + φ
(
pj0 − p

j
−1
)
− φβE0

(
pj1 − p

j
0

)
= 0 (62)

And since every firm solves the same problem, pjt = pit for any firms i and j. Therefore:

φ (p0 − p−1) = φβE0 (p1 − p0) + η(y0 − ȳ) + ũ0 (63)

p0 − p−1 = βE0 (p1 − p0) +
η

φ
(y0 − ȳ) +

1

φ
ũ0 (64)

Finally, we make use of the fact that πt = pt − pt−1 and obtain:

π0 = βE0π1 + κ(y0 − ȳ) + u0 (65)

where:

κ ≡ η

φ
(66)

and:

u0 =
1

φ
ũ0 (67)

C.3 Extension to Infinite-Horizon

The analysis presented here focused on a two-period model, but we could extend the model

to an infinite horizon model. In so doing, we would find that the inflation relationship

uncovered above would hold for any two adjacent periods t and t+ 1:

πt = βEtπt+1 + κ(yt − ȳ) + ut (68)
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And this is the dynamic AS relationship.

D Model Solution

D.1 Demand Shock

After eliminating the real and nominal interest rates from the model, there are two equations

that describe output and inflation given the demand shock:

yt = Etyt+1 + Etπt+1 − (1− φπ)πT − φππt + gt (69)

πt = (1− β)πT + β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) (70)

We will solve this using the method of undetermined coefficients.

D.1.1 Guess

Guess that the solution has the following form:

yt = ȳ + agt (71)

πt = πT + bgt (72)

This is a good guess because we know that in the steady state gt = 0, yt = ȳ, and πt = πT .

Now, the guess implies:

Etyt+1 = ȳ + aρggt (73)

Etπt+1 = πT + bρggt (74)

Now we can solve for a and b.
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D.1.2 Solve

Start with the first equation of the system and use the guess to eliminate Etπt+1, Etyt+1,

and πt from the right-hand side of the equation:

yt = Etyt+1 + Etπt+1 − (1− φπ)πT − φππt + gt (75)

= ȳ + aρggt + πT + bρggt − (1− φπ)πT − φπ(πT + bgt) + gt (76)

= ȳ + aρggt + bρggt − φπbgt + gt (77)

= ȳ + [aρg + b(ρg − φπ) + 1] gt (78)

Therefore:

a = aρg + b(ρg − φπ) + 1 (79)

Next, use the dynamic AS equation to write:

πt = (1− β)πT + β
(
πT + bρggt − πT

)
+ κ(ȳ + agt − ȳ) (80)

= πT + βbρggt + κagt (81)

= πT + [βbρg + κa] gt (82)

Therefore:

b = βbρg + κa (83)

Now, take the two boxed equations and solve for a and b:

a =
1− βρg

(1− βρg)(1− ρg) + κ(φπ − ρg)
(84)

and:

b =
κ

(1− βρg)(1− ρg) + κ(φπ − ρg)
(85)

You should verify that these equations are in fact solutions to the original system.
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D.2 Monetary Policy Shock

After eliminating the real and nominal interest rates from the model, there are two equations

that describe output and inflation given the monetary policy shock:

yt = Etyt+1 + Etπt+1 − (1− φπ)πT − φππt − vt (86)

πt = (1− β)πT + β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) (87)

Apparently, the monetary policy shock enters the reduced model in the same way that the

demand shock does but with the opposite sign. Therefore, the solution has the following

form:

yt = ȳ + avt (88)

πt = πT + bvt, (89)

with:

a = − 1− βρv
(1− βρv)(1− ρv) + κ(φπ − ρv)

(90)

and:

b = − κ

(1− βρv)(1− ρv) + κv
(91)

You should verify that these equations are in fact solutions to the original system.

D.3 Supply Shock

After eliminating the real and nominal interest rates from the model, there are two equations

that describe output and inflation given the inflation shock:

yt = Etyt+1 + Etπt+1 − (1− φπ)πT − φππt (92)

πt = (1− β)πT + β
(
Etπt+1 − πT

)
+ κ(yt − ȳ) + ut (93)

We will solve this using the method of undetermined coefficients.
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D.3.1 Guess

Guess that the solution has the following form:

yt = ȳ + aut (94)

πt = πT + but (95)

This is a good guess because we know that in the steady state ut = 0, yt = ȳ, and πt = πT .

Now, the guess implies:

Etyt+1 = ȳ + aρuut (96)

Etπt+1 = πT + bρuut (97)

Now we can solve for a and b.

D.3.2 Solve

Start with the first equation of the system and use the guess to eliminate Etπt+1, Etyt+1,

and πt from the right-hand side of the equation:

yt = Etyt+1 + Etπt+1 − (1− φπ)πT − φππt (98)

= ȳ + aρuut + πT + bρuut − (1− φπ)πT − φπ(πT + but) (99)

= ȳ + aρuut + bρuut − φπbut (100)

= ȳ + [aρu + b(ρu − φπ)]ut (101)

Therefore:

a = aρu + b(ρu − φπ) (102)

Next, use the dynamic AS equation to write:

πt = (1− β)πT + β
(
πT + bρggt − πT

)
+ κ(ȳ + agt − ȳ) + ut (103)

= πT + βbρuut + κaut + ut (104)

= πT + [βbρu + κa+ 1]ut (105)
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Therefore:

b = βbρu + κa+ 1 (106)

Now, take the two boxed equations and solve for a and b:

a = − φπ − ρu
(1− βρu)(1− ρu) + κ(φπ − ρu)

(107)

and:

b =
1− ρu

(1− βρu)(1− ρu) + κ(φπ − ρu)
(108)

You should verify that these equations are in fact solutions to the original system.
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Figures

Figure 1: Aggregate demand shock. Impulse responses of the exogenous component
of demand, the nominal interest rate, output, and inflation to a one percent shock to the
exogenous component of aggregate demand.
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Figure 2: Inflation shock. Impulse responses of the exogenous component of inflation,
the nominal interest rate, output, and inflation to a 0.25 percent shock to the exogenous
component of inflation.
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Figure 3: Monetary policy shock. Impulse responses of the exogenous component of
inflation, the nominal interest rate, output, and inflation to a 0.25 percent shock to the
exogenous component of monetary policy.
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Figure 4: Representation of household preferences.
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Figure 5: Saving and borrowing behavior is determined by the relative sizes of income in
each period.
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Tables

Table 1: Calibrated parameters for the dynamic AS-AD model.

Parameter Value
ȳ 0
β 0.995
κ 0.1
πT 0.02
φπ 1.5
φy 0.5/4
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