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Abstract

I describe a new course that I taught at the University of California, Irvine in

the winter quarters of 2019 and 2020. The course is a Python-based introduction

to macroeconomic data analysis and modeling. Students develop basic familiarity

with dynamic optimization and simulating linear dynamic models, basic stochastic

processes, real business cycle models, and new Keynesian business cycle models. For

many of my students this is their first experience with computer programming in any

language. Students also gain familiarity with the popular Python libraries Numpy,

Matplotlib, Pandas and made extensive use of the Jupyter Notebook. Feedback from

students suggests that they found the course to be valuable, interesting, and enjoyable.

∗Associate Teaching Professor, Department of Economics, University of California, Irvine, Phone: +1

(949) 824-0640, Fax: +1 (949) 824-2182, Mailing address: 3151 Social Science Plaza, Irvine, CA 92697-5100,

Email: bcjenkin@uci.edu



1 Introduction

Computational methods are prominent in macroeconomic research. In fact, computational

methods are often the only way to solve and simulate modern macroeconomic models because

most simply don’t admit pencil and paper solutions.1 Computational methods are also often

essential for economic data management, analysis, and visualization. Furthermore, many

jobs in business and finance value computational proficiency at some level. Blumenstyk

(2016) reports evidence that possessing computer programming skills raises the wages of

newly graduated liberal arts majors by $14,000 per year. Data analysis and management

skills produce a $12,000 annual wage premium.

In this article, I describe a new course that I taught at the University of California, Irvine

(UCI) in the winter quarters of 2019 and 2020 under the name “Computational Macroeco-

nomics”. The course is a Python-based introduction to macroeconomic data analysis and

modeling. Students practice downloading and managing macroeconomic data from inter-

net sources, computing statistics, preparing data visualizations, simulating linear dynamic

models, solving models of dynamic optimization, simulating real business cycle (RBC) and

new Keynesian business cycle models, and verbally interpreting computed results. Students

are also encouraged to think critically about the RBC modeling approach after reading and

discussing papers by Prescott (1986) and Summers (1986). Along the way, students gain

familiarity with the basics of computer programing and some popular Python libraries like

Numpy, Matplotlib, Pandas, and the Jupyter Notebook environment. By the end of the

course, students develop deeper macroeconomic intuition, gain experience analyzing and

plotting data with Python, practice business cycle modeling, and build programming expe-

rience that will hopefully start them on a path of increasing computer proficiency.

The course is intended for senior economics majors and the prerequisites are intermediate

macroeconomics and one quarter of econometrics. The course presumes no prior computer

programming experience and in the first week, students get a brief introduction to pro-

gramming in Python. For many, this is their first meaningful encounter with computer

programming. Part my philosophy in designing the course is that programming is like cook-

ing. Most people are not going to be professional chefs and so, reasonably, they learn how to

cook as they go; acquiring the skills necessary to execute a desired recipe. Likewise, following

a brief introduction to Python basics, additional programming techniques are introduced in

each class on an as-needed basis. Students amass examples of working code that they can

reference for future applications. Hopefully the course stimulates their interest in coding and

1The following books are excellent references on solving, simulating, and estimating macroeconomic mod-
els: Canova (2007), Stachurski (2009), DeJong and Dave (2012), and Ljungqvist and Sargent (2018).
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inspires them to continue practicing on their own or in more formal settings.

Instructional materials for the course are available in the following GitHub repository:

https://github.com/letsgoexploring/computational-macroeconomics

The repository contains a set of Jupyter Notebooks for the course organized by class meeting.

A Jupyter Notebook is a document that integrates computer code, in this case Python, with

rich text including equations and links. One of the contributions of this paper is that I

describe how to exploit the versatility of Jupyter Notebooks to teach better. The course

GitHub repository also contains a sample syllabus, lecture slides, and a Python script for

removing code from Jupyter Notebooks to make what are essentially electronic worksheets

for class and homework assignments. I am happy to provide the course assignment files to

other instructors upon request.

I am not the first to teach computational methods to undergraduates (see, for example

Solis-Garcia (2018) and Neumuller, Rothschild and Weerapana (2018)). The value-added

in this article is that I (1) describe an outline of the course that I teach, (2) describe how

to teach it effectively with Python and the Jupyter Notebook, and (3) provide resources to

other instructors who might want to teach a similar course.

2 Who Takes the Course?

Students in my winter 2019 and 2020 courses completed pre- and post-quarter surveys.

Between the two courses, I had 90 students; 40 in 2019 and 50 in 2020. The surveys were

not anonymous and were independent from the university’s official course evaluation system.

Completing the surveys was optional, but all 90 students completed both. The pre-quarter

survey asked them to provide a little information about their backgrounds. 78 percent of

the students were in their fourth year, 11 percent were third year students, 9 percent were in

fifth-year students, and the remaining students were in their third year. All were in one of

the three economics majors that UCI offers (Quantitative Economics, Business Economics,

or Economics) and several were double majoring in Mathematics, Data Science, Education

Sciences, Computer Science, Biological Sciences, Political Sciences, Biomedical Engineering,

and/or Psychology.

The pre-quarter survey indicated that students had a strong desire to learn computing

skills and that, in general, they entered the class with limited programming experience. More

than half of the class (59 percent) had never taken a college-level computer programming

course and, as shown in Figure 1, about 19 percent of students indicated that they were

not even moderately familiar with any programming languages. Figure 2 shows students’
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self-reported assessment of computer programming proficiency using the NIH Competencies

Proficiency Scale.2 88 percent reported proficiency at novice or below. Given the students’s

advanced standing in their degree programs, it is unlikely that they would have obtained

programing experience as undergraduates in other settings.

3 Why a Course in Computational Macroeconomics?

I have four primary learning objectives for students in my Computational Macroeconomics

course. The first is for them to learn to use the Python programming language to simulate

quantitative dynamic macroeconomic models that are foundational for cutting-edge research

and policy analysis. These models are often covered rapidly in first-year graduate courses,

but in my course, I develop them at a pace that the undergraduates have time to build

intuition. I also carefully avoid certain advanced topics like Bellman equations and the details

of Taylor approximation methods. Exercises emphasize visualizing data, simulating models,

and providing intuitive explanations of the underlying economic mechanisms. Students leave

the course with meaningful exposure to advanced macroeconomic modeling.

The second objective of the course is to practice data analysis and visualization. We work

with macroeconomic data from FRED and data sets that I’ve prepared specifically for them.

We make ample use of OLS estimation and summary statistics. Students are frequently

asked to construct plots of historical data or data that they have simulated from models.

I strongly emphasize the importance of creating high quality, easy-to-read visualizations.

Students practice explaining the intuition behind the figures that they produce to me and

to the class.

Third, I want students to develop stronger macroeconomic intuition. They do this by

managing and analyzing macroeconomic data, by working with models and simulating them,

and by reading articles and discussing debates. We discuss the Lucas (1976) critique and we

read a debate between Edward Prescott and Lawrence Summers about the merits of RBC

modeling. We explore a new Keynesian model and I relate it back to the IS-MP-AS model

that most of them will have learned in intermediate macroeconomics.

The final objective of the course is to teach students Python programming skills, specif-

ically, and computer-proficiency more generally. The course presumes no prior coding ex-

perience and students learn to code like many economists do: by acquiring skills as needed

to solve specific problems. I share with the class how programming is fundamental to my

research and administrative productivity. I hope that the experience develops the students’s

confidence, inspires them to continue developing programming skills, and ultimately makes

2https://hr.nih.gov/working-nih/competencies/competencies-proficiency-scale
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them more productive and marketable when they graduate from UCI.

The Journal of Economic Education (JEE) recently published a collection of articles

on whether dynamic stochastic general equilibrium (DSGE) models should be taught in

undergraduate economics courses.3 Solis-Garcia (2018) makes the case in favor, arguing

that a DSGE-based macroeconomics course brings capable undergraduate students to the

macroeconomics research frontier, provides them with marketable programming experience,

and prepares them for the content that they will find in PhD programs. Strongly against

the proposition, Setterfield (2018) argues that DSGE methods should not be taught to

undergraduates. According to Setterfield, “the purpose of undergraduate macro is less about

getting the theory exactly right than it is about basic concepts, terminology, and how policy

affects the economy.” The purpose is undermined, he argues, when students are taught

business cycle models with no or limited role for macroeconomic policy.

Taking the middle road in the symposium, Neumuller et al. (2018) argue that since

DSGE modeling is part of mainstream macroeconomic research, undergraduates should be

introduced to DSGE models, but in a way that builds a “conceptual bridge” between the

macroeconomics research frontier and the more intuitive, Keynesian-inspired models of the

standard intermediate macroeconomics curriculum. For them, the ideal bridge makes clear

to students why DSGE modeling has value and what are the costs and benefits of alternative

approaches to macroeconomic modeling. Crucially, they emphasize that it would be inappro-

priate to send students a message that what they had already learned about macroeconomics

is wrong.

I respect Setterfield’s arguments against and the concerns about teaching DSGE methods

to undergraduates. But I also agree with the justifications put forth by Neumuller et al. It

can worthwhile if done in a way that builds students’s intuition for macroeconomics. That

is, if the DSGE models are only part of a set of broader set of course topics designed to

promote deeper understanding of macroeconomics, then the pedagogical benefits outweigh

the drawbacks that Setterfield identifies.

My course is a complement, not a substitute, for a strong, traditional intermediate

macroeconomics foundation. It’s an opportunity for students to try something new, get

a different perspective on some of the ideas that they’ve been learning, and hopefully to get

excited about programming, data analysis, and macroeconomic modeling.

3“The Macro Pedagogy Debate: Teaching DSGE to Undergraduates Symposium,” Issue 3, 2018. Articles
in the symposium include: Colander (2018), Solis-Garcia (2018), Setterfield (2018), and Neumuller et al.
(2018)
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4 Why Python?

I could, with similar effect, teach this course using a different program. Matlab and Octave

are obvious alternatives. However, Python offers several advantages. First, Python is free

to obtain so students won’t have to worry about buying software licenses in order to apply

what they learn in the course. Second, Python is becoming more popular within economics

and many other fields.4 Third, Python is versatile. There is an abundance of high-quality

third-party libraries that can be easily and freely installed from the Python Package Index

(PyPI) repository that add functionality to a basic Python installation. So by the end of the

course, students will have experience with a program that is free, versatile, and increasingly

used in economics, finance, and many, many other applications.

Dynare is popular and widely used software for simulating DSGE models that runs on

top of Matlab or Octave. Some readers will wonder why I didn’t structure the course so

that I could use make use of it. An obvious reason is my preference for Python over Matlab.

Another reason is that Dynare uses a Dynare-specific syntax and so even if I were to use

Matlab, I’d still avoid teaching Dynare in this course. Dynare is convenient because the

user enters model equilibrium conditions in a symbolic format and then Dynare parses the

equations. But since the user isn’t programing in the fundamental language (e.g., Matlab),

they aren’t practicing the fundamental language. I prefer to have the course based entirely

on one language. I wrote a Python package called linearsolve specifically for this course that

allows users to solve and simulate DSGE models using only Python code. See Section 6 for

details about linearsolve.

There are many options for installing a Python environment for scientific computing. I

use Anaconda and recommend that my students do too.5 Anaconda is a Python package

manager, a Python data science distribution, and a collection of over 1,500 open source

Python packages including ones that I use in this course: Matplotlib, NumPy, SciPy, Pandas,

and StatsModels. Anaconda is fast and easy to install and its package manager ensures that

all installed Python package versions are compatible.6

Just like there are many ways to get a Python installation, there are even more options

for choosing a development environment. In addition to Python and a base set of Python

packages, an Anaconda installation also includes a few other programs including the Jupyter

Notebook. The Jupyter Notebook is a web-browser environment that allows for a mixture

4See, for example the economics-oriented Python resources and examples at QuantEcon:
https://quantecon.org/.

5https://www.anaconda.com/products/individual
6For instructions for installing and updating an Anaconda distribution, see the short walkthrough that I

made for my YouTube channel: https://youtu.be/tzAB5swLxx0
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of Python and other cells. Notebooks can be exported to HTML and other portable formats

for easy sharing. From a pedagogical perspective, the Jupyter Notebook is a fantastic tool

that makes it easy to teach. I use the Notebook to teach in class. I prepare a complete

Notebook with instructions and code and then use a script that removes all of the code, but

not the comments, from a Notebook. I share the blank Notebook with the class and we work

through the coding exercise together. I use a similar approach for constructing homework

assignments. Students complete blank homework Notebooks, convert the completed Note-

books to html, and upload to the course Canvas page for easy grading. I elaborate on how

I use Jupyter Notebooks in the next section.

5 Course Overview

I describe the structure of the course including topics, class meeting format, and the nature

of the course assignments. I discuss which particular aspects of the course seem to work well

and where I think improvements could be made. The course design reflects my particular

interests and the constraints of teaching on a quarter system. I would expect that other

instructors would choose to omit some of what I cover and emphasize other things. I discuss

alternative topic ideas that would adequately introduce students to advanced macroeconomic

concepts and provide them with coding experience too. I also suggest how the course might

be expanded into a semester-long course.

5.1 Course Structure

UCI is on the quarter system and so my course lasts for 11 weeks: 10 weeks of regular

class instruction and a final exam in the 11th week. During the first 10 weeks, each week

consisted of two 80 minute lecture sessions and one 50 minute “discussion section” during

which students typically worked on problems for credit. For Computational Macroeconomics,

I developed a hands-on approach to instruction that emphasizes continual learning-by-doing.

All meetings were held in a computer lab.

5.1.1 Lecture Format

A typical lecture is based on a prepared Jupyter Notebook. A Jupyter Notebook is a docu-

ment that integrates computer code, in this case Python, with rich text including equations

and links. The Notebook is a wonderful instructional tool because it allows me to write

notes and instructions in HTML that students can read in advance and then we complete
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the Notebook together in class. See Figure 3 for an example of a blank and complete Note-

book. On the left is the blank Notebook that is distributed in advance and on the right is

the completed Notebook with code and results.

Making a blank notebook would be tedious and so I have written a script that parses com-

pleted Notebooks and removes code, images, and results and leaves HTML, code comments,

and code that has been marked with appropriate comment text to be left alone.7 Therefore

all I have to do to prepare a Notebook for class is construct the complete Notebook and run

the script and then I have a blank Notebook that I can share with students before class and

a completed one that I can share with them after.

In general, a lecture starts with a short description of an economic problem to be solved

followed by me walking the students through coding examples related to the problem. Typ-

ically, a couple of times per class, I give the students a short problem to work themselves.

These take about 10 minutes each. I move around the room helping students with their er-

rors and encourage students with coding experience to help their neighbors. Students seem

to really like that lectures are held in computer labs because they get immediate help.

5.1.2 Discussion Section Format

In addition to the two 80 minute lecture sessions per week, I also lead a 50 minute “discussion

section” during which students work on one or more programming problems to be submitted

by the end of the class for credit. The problems are based on the new material covered

during the previous lecture. I encourage the students to work together but each has to

submit their own work. I have not made the discussion assignments available on the public

GitHub repository. I would be happy to share them with other instructors. Please contact

me directly to obtain them.

Week 8 is a little different. Following a section on simulating RBC models, students

are asked to read Edward Prescott’s (1986) and Lawrence Summers’ (1986) articles in the

Federal Reserve Bank of Minneapolis Quarterly Review. In the discussion section that week,

we discuss some of Summers’ criticisms of Prescott’s RBC modeling approach. Students

submit answers to questions designed to help them think through the issues in the papers.

The goal is to help the students think a little bit more carefully about the assumptions

underlying the RBC models.

7File name is “make blank notebooks.py”; available on the course GitHub page.
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5.1.3 Homework

I give weekly graded homework assignments. Homework assignments are distributed as

Jupyter Notebooks that contain instructions, but no code. As mentioned, a nice feature

of the Notebook is that they can be exported to HTML and viewed as a web document.

UCI uses Canvas as our learning management system (LMS) and Canvas allows students to

upload assignments as HTML files so it’s easy to manage, review, and grade submissions.

Homework assignments are available to other instructors on request.

5.1.4 Final Projects

At the end of the quarter, students are assigned to groups of five. Each group is given a

variation of an RBC model and a set of instructions about what they are to do with the

model. For example, model variants include an RBC mode with capital adjustment costs

and an RBC model with stochastic government consumption. In all cases, the groups have

to derive a new set of equilibrium conditions. In some cases, they are asked to download data

from FRED to calibrate parameters that are novel to their respective models. In other cases,

they are asked to compute several counterfactual impulse response simulations with different

values of a key parameter. In all cases, the groups produce a 10 to 15 minute presentation of

their results to be delivered during the last week of class. Groups submit their presentation

slides and Jupyter Notebooks with code used to generate results. Final project assignment

instructions are available to other instructors on request.

In the final project, students bring together many of the skills that they learn during the

quarter and apply them to produce something meaningful. The purpose of the presentation

component is to help students see programming as a means to an end. They use Python

to simulate their respective models and to produce visualizations that they include in their

presentations. A lot of students seem to have anxiety about the final project because they

are generally averse to giving presentations and, understandably, they are not confident

working with RBC models. But my students have risen to the challenge and I have been

impressed by their success in completing the final project assignments and by the quality of

their presentations.

5.2 Course Topics

Table 1 contains a list of the topics that I cover in each lecture. The 10-week course is

roughly divided into three three-week blocks of instruction and a final week of group project

presentations in the final week. In the first three-week block, students learn the basics of
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Python programming. In the second, they learn how to simulate dynamic models. In the

third, they analyze business cycle data and simulate business cycle models.

The first three-week block is dedicated to building basic Python proficiency and intro-

ducing specific programing techniques and Python functionality that students will use in the

remainder of the course. In the first four classes, students learn about Python variable types,

built-in functions, how to interpret error messages, how to work with Numpy arrays and how

to make simple graphs with Matplotlib. I assign the chapter “Introduction to Programming”

from Stachurski’s (2009) book to be read the first week because it is an excellent, concise

introduction to programming in general and Python in particular. I also direct students to

books available electronically from my campus’s library for additional resources.

In the third week, students are introduced to Pandas and Statmodels. Pandas is a

powerful tool for managing data and Statsmodels provides statistics functionality. In Class

5, students work with cross country money growth and inflation data for over 170 countries.

They use Pandas to import the data, sort the data, and compute and interpret summary

statistics. Then they replicate Chart 1 from McCandless and Weber (1995).

In Class 6, I introduce the class to Statsmodels. In this class, students work with data

from the Penn World Tables. To motivate the class, I show them Figure 4 from Jones and

Romer (2010) depicting the positive and striking correlation between GDP per capita and

total factor productivity (TFP) across countries. Students are given data on GDP per capita,

human capital per capita, and physical capital per capita for a large sample of countries.

They use the data to compute TFP for each country. Then, they use Statsmodels to estimate

a linear regression model of log TFP on log GDP. We discuss the results in class.

In the second three-week block, we begin developing theoretical tools for model simula-

tion. Topics include simulating linear difference equations (Class 7) and simulating nonlinear

difference equations (Class 8). I use the Solow model as an application here because (1) stu-

dents have already encountered it in their intermediate theory courses and (2) it provides a

nice introduction into RBC modeling.

In Class 9, I teach the students how to measure business cycle fluctuations. I give them

a data set with aggregate US data on GDP, consumption, investment, and trends of each

statistic computed using a HP filter. Students use the data to compute the business cycle

components of each quantity in the data; i.e., log deviations of each quantity from trend.

They make plots of the computed series and compute and interpret summary statistics of

the business cycle data including standard deviations of each series and correlations. They

learn that the goal is to develop a model to explain the patterns in the data.

Next, we consider white noise and AR(1) processes in Class 10. Generating random

numbers is easy with Numpy and we simulate the processes. The students apply this to
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estimating an AR(1) model of the business cycle component of TFP for the US. They find

that an AR(1) model fits the data well and that the coefficient on lagged TFP is estimated

to be around 0.7 so that TFP fluctuations are evidently highly persistent.

In Class 11, I introduce students to dynamic optimization by studying a cake-eating

problem. I present a two-period model and solve for the optimal consumption plan. We

discuss the intuition and then I ask them to solve a three-period problem on their own.

Finally, in Class 12, I show the students how to use the Python module linearsolve.

linearsolve is a Python module for computing linear approximations to and simulations of

DSGE models. I wrote linearsolve specifically for this course and I describe it more detail

in Section 6. Applications include using linearsolve to simulate an AR(1) process and to

compute a stochastic simulation of the Solow growth model. This concludes the tool-building

part of the course.

Having worked with the cake-eating model in Class 11 and presenting an application

of the problem in a discussion section, in Class 13 we begin to explore RBC modeling. I

show them slides containing results from a simulated stochastic Solow growth model. In

Class 9, they learned about the properties of business cycle data. In this class, I show them

that (1) the stochastic Solow model does a “reasonably” good job of explaining output and

cosumption fluctuations in the US and that (2) the stochastic Solow model substantially

under-predicts the volatility of investment. Also, I show them that the Solow model predicts

perfect correlation of consumption and investment with output.

Next, I present an RBC model of a centralized economy that is basically that of Brock

and Mirman (1972). I show them how to set up the problem and to derive the household’s

first-order conditions. To me, the important parts of this exercise are (1) writing the problem

and understanding the economic decision, (2) deriving the first-order conditions, collecting

all equilibrium conditions and verifying that the number of equations matches the number

of endogenous variables, and (4) identifying which variables are endogenous and which are

exogenous. Other instructors (e.g., see Solis-Garcia (2018)) want students to learn solution

techniques like value function iteration, but in my experience teaching solution techniques

to undergraduates is costly. It takes too long to teach them competence and does not give

them a generalizable skill. The linearsolve Python module requires students to write Python

code based on the equations of the RBC model and does the advanced and time-saving work

of model approximation and solution.

The result of Class 13 is for students to generate on their computer screens a set of impulse

response plots following technology shock in the RBC model. We analyze the generated

figure. I relate the image to what they know about the tradeoff between consumption and

saving. Since they have already practiced simulating AR(1) processes, so they know where
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the TFP part of the simulation comes from. We interpret the rest of the impulse response

plots by appealing to the model’s equilibrium conditions and intuition. We start by asking

what happens to the endogenous variables in the period of the TFP shock. More TFP leads

to more output making more resources available for consumption and investment. Why does

consumption continue to rise after period 5? Because the TFP shock causes the capital stock

to grow. Why is output still above steady state in period 25 but TFP has essentially returned

to zero? Because the economy accumulated capital. This is one of the key pieces of intuition

that I want them to see: the household in the RBC model uses capital accumulation to store

the temporary benefits of a productivity increase.

In the discussion section following Class 14, students use linearsolve to generate a stochas-

tic simulation of the RBC model without labor. They compute summary statistics and find

that the RBC model without labor does a little better than the stochastic Solow model

in that it generates a significantly higher variance of investment and a lower correlation of

investment with GDP. However, the model still drastically under-predicts consumption and

GDP volatility and the predicted correlations of the endogenous variables could be improved.

In Classes 14 and 15, we are in a position to start replicating the results of Prescott (1986)

including simulated data in Figure 3 and the correlations in Table 2. Prescott’s model is

basically what we have already been working with except it allows for an endogenous labor

choice. By the end of the class, we compute and interpret impulse responses from the model.

In Class 15, we examine how changing the autocorrelation of the TFP process changes the

persistence of a shock to TFP and the shapes of the impulse responses of other variables

too. The goal is to emphasize one of the benefits of computational methods: it’s easy to do

counterfactual simulations to see how parameterizations affect results.

We conclude Class 15 by comparing statistics computed from the simulated RBC model

with statistics from US business cycle data. Students see that, relative to the RBC model

without labor, Prescott’s RBC model produces GDP and investment volatility that is closer

to that observed in the data. I invite the students to be critical and to observe that there

is still room for improvement. Predicted correlations of variables with GDP are still too low

and so is consumption volatility. But the model seems to do well considering it’s relative

simplicity.

In the discussion section following Class 15, we wrap-up the RBC section with a discus-

sion of the arguments in Summers (1986) critique of Prescott’s RBC modeling approach.

Summers offers a nice, concise critique of the RBC approach by arguing that the chosen pa-

rameter values for Prescott’s simulation are suspect (“big loose tent flapping in the wind”),

that Prescott doesn’t provide support for why we should believe that technology has fluctu-

ated as substantially as Prescott suggests, that Prescott doesn’t explain whether his model
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can predict price movements (e.g., wages or interest rates), and finally that Prescott’s model

completely disregards the substantial market failures that accompany business cycle down-

turns. I take these criticisms seriously and I encourage the students to do so also. I use these

criticisms to motivate the new Keynesian modeling perspective as a response to criticisms

of the RBC framework by Summers and others.

The final three class sessions are devoted to developing a new Keynesian business cycle

model. I motivate the new Keynesian IS curve by presenting a simple intertemporal opti-

mization model of saving in an endowment economy. The Euler equation in the model is the

IS equation. I show that the IS equation in the new Keynesian model is analogous to the

Euler equation in the RBC models that we’ve already considered. Hopefully they see that

even though we have moved beyond the RBC framework, we did not start over from scratch.

To close the model, I provide a new Keynesian Phillips curve (NKPC) and a Taylor

(1993)-type monetary policy rule. I discuss the intuition behind the NKPC but I do not

derive the equation for the class. I do, however, provide them with optional notes on its

derivation for any interested students to read.

My rationale for including the new Keynesian model in the course is twofold. First,

after discussing with the class some of the drawbacks of the RBC modeling approach, it’s

appropriate to present students with an alternative perspective addressing at least some of

Summers’s comments to show students that we don’t have to throw out all elements of the

RBC modeling approach. Second, many popular intermediate macroeconomics and money

and banking textbooks include a version of the new Keynesian-flavored IS-MP-AD model

(Examples include Mishkin (2019),Mankiw (2019), and Jones (2020)). This is a nice time

to introduce a quantitative model that is related to what the students would have seen in

intermediate macroeconomics or money and banking.8

As with the RBC simulation, I emphasize interpreting equilibrium conditions, construct-

ing visualizations of impulse responses to shocks, and visualizations of stochastic simulations

and this occupies Classes 17 and 18. To wrap-up instruction, I use Class 18 to describe how

many contemporary models combine elements of RBC and new Keynesian modeling and

therefore fall under the what Goodfriend and King (1997) call the New Neoclassical Synthe-

sis (NNS). I describe the equilibrium conditions in a NNS model that combines Prescott’s

RBC model with a new Keynesian Phillips curve (NKPC) arising from monopolistically com-

petitive firms facing sticky prices. I give them the code to simulate the model and we analyze

the impulse responses generated by the model. The point is to demonstrate a larger-scale

8Note that Mankiw’s intermediate macroeconomics textbook has a nice quantitative model that students
can simulate with spreadsheet software. To make the model tractable, he assumes a static IS relationship
between the real rate and output and that agents have adaptive expectations.
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model that integrates the appealing features of the two models that they learned during the

quarter and to given them a sense of how macroeconomic models evolve.

5.3 Alternative Topic Ideas

The course content reflects my interests and the amount of content is limited by the length of

the 10-week quarter. Here are some thoughts on what I might include if I had the additional

five weeks of a semester. First, it would be nice to include an endogenous growth model for

the class to simulate. Jones (2020) presents a nice computable endogenous growth model in

his intermediate textbook. Second, in the RBC section of the course, we could take time to

cover some extensions to the RBC model including things like capital adjustment costs or

shocks to government purchases. As it is, these topics are only included among final project

topics, but it would be nice to have class time to teach and discuss them. Third, in the

new Keynesian section of the course, some additional time would give us time to review the

evidence for NKPC and monetary policy rules. I would cover Taylor’s (1993) paper and give

students an exercise to replicate Figure 1 from his paper. Fourth, I would cover discretionary

monetary policy as described in Clarida, Gaĺı and Gertler (1999).

Of course some instructors may prefer to go more in depth on any of the topics that I

have proposed so far others may wish to include entirely different topics and methods. For

example, I’ve already mentioned that Solis-Garcia teaches value function iteration in his

course at Macalester College. Another opportunity is the Diamond-Mortensen-Pissarides

(DMP) of unemployment. Bhattacharya, Jackson and Jenkins (2018) describe how to teach

the DMP model to undergraduates. They provide a model that can be computed as easily

as the Solow model and they provide data that can be used in empirical exercises on the

website for their paper.9 Additionally, the course could be modified to include forecasting

and VAR methods; both of which could be taught with the Statsmodels Python module.

Finally, in many cases it may be worthwhile to require a programming prerequisite. At

UCI, enrollment constraints in even introductory computer science courses makes it infeasible

for me to require that my students take a programming course in advance. But at schools

where it’s an option, adding the prerequisite would certainly free up time on the course

schedule.

9https://www.briancjenkins.com/dmp-model/
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6 linearsolve

I developed new software specifically for this course. Solving dynamic stochastic macroeco-

nomic models requires advanced computational techniques and so I wrote a Python module

called linearsolve, available to any Python user from the Python Package Index, that com-

putes linear approximations to DSGE, computes the solutions to the approximated models,

and produces customizable simulations.10 Pedagogically, the program is useful because it

requires that students properly enter equilibrium conditions as Python code so they practice

economics and Python at the same time.

Figure 4 depicts of an example of how to use the code to compute impulse responses to

a technology shock in an RBC model with log utility and no labor. For more examples of

how to use linearsolve, please see the documentation:

https://www.briancjenkins.com/linearsolve/docs/build/html/index.html

7 Conclusion

Designing and teaching my Computational Macroeconomics course has been a wonderful

experience. I am convinced that the content is valuable and that it has been well-received

by my students. Indeed, one student who took the course in winter 2019 described the course

as a “game-changer” for her in an interview with an online campus publication (Byrd 2019).

This student’s sentiment was echoed by others in the (non-confidential) post-quarter survey

that I asked my students to complete. Given my students’s enthusiasm for the course, I would

like to see computational methods built in to more courses in a deliberate and unified way.

While computational methods are not, strictly speaking, economics, they are nonetheless

important to economics. And to the extent that many economists are practitioners, we can

provide great value to our students at low cost by giving them skills that will transfer over

to other disciplines and activities while also enhancing their learning of economics.

10Full documentation available here: https://www.briancjenkins.com/linearsolve/docs/build/html/
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8 Tables

Table 1: Outline of topics. List of topics covered in each lecture.

Class # Topic(s)

1 Introduction to course and the Jupyter Notebook. Short coding examples.
2 Python basics. Built-in functions, error messages, built-in object types, math.
3 Numpy module. Math, arrays, and random number generation.
4 Plotting with the Matplotlib module.
5 Data management with the Pandas module.
6 Statistics with Statsmodels module.
7 Simulate linear first-order and linear higher-order difference equations.
8 Simulate nonlinear first-order difference equations and systems of difference equations. Solow growth model.
9 Introduction to business cycle data
10 White noise and AR(1) processes.
11 Introduction to Dynamic Optimization: A Two-Period Cake-Eating Problem
12 The linearsolve module
13 Introduction to Real Business Cycle Modeling
14 Prescott’s (1983) Real Business Cycle Model: Impulse responses
15 Prescott’s (1983) Real Business Cycle Model II: Stochastic simulation
16 Introduction to New-Keynesian Business Cycle Modeling
17 New-Keynesian Business Cycle Modeling: Impulse responses
18 New-Keynesian Business Cycle Modeling: Stochastic simulation
19 Group project presentations.
20 Group project presentations.
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9 Figures

Figure 1: Programming languages for which students had prior experience. Per-
centage of students responding that they are at least “moderately familiar” with each lan-
guage. “Other” includes Microsoft Visual Basic, Mathematica, and EViews.
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Figure 2: Student pre-course programming proficiency. Student self-assessment of
computer programming proficiency. Options were (from least to most): No experience, fun-
damental awareness, novice, intermediate, advanced, expert. 90 percent reported proficiency
at novice or below.
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Figure 3: Example of a Jupyter Notebook. On the left is a blank Notebook that I
provided students in advance of lecture. On the right is the Notebook with code and output
that was completed in class.
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Figure 4: The linearsolve Python module. Example of how to approximate, solve, and
simulate an RBC model with linearsolve.
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